

Cloning of rabbit α_{1b} -adrenoceptor and pharmacological comparison of α_{1a} -, α_{1b} - and α_{1d} -adrenoceptors in rabbit

Hailan Piao, Takanobu Taniguchi, Seigo Nakamura, Jun Zhu, Fumiko Suzuki, Daisuke Mikami, Ikunobu Muramatsu*

Department of Pharmacology, School of Medicine, Fukui Medical University, Matsuoka, Fukui 910-1193, Japan Received 26 August 1999; received in revised form 21 February 2000; accepted 25 February 2000

Abstract

We have isolated a cDNA clone of the rabbit α_{1b} -adrenoceptor which has an open reading frame of 1557 nucleotides encoding a protein of 518 amino acids. The sequence shows higher identity to those of hamster, human, and rat α_{1b} -adrenoceptors than to those of rabbit α_{1a} - and α_{1d} -adrenoceptors. The pharmacological binding properties of this clone expressed in Cos-7 cells showed a characteristic profile as α_{1b} -adrenoceptor; high affinity for prazosin (p K_i = 10.3), relatively high affinity for tamsulosin (9.5) and low affinity for (-)-(R)-1-(3-hydroxypropyl)-5-[2-[[2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl]amino]propyl]indoline-7-carboxamide (KMD3213) (8.5), 2-(2,6-dimethoxy-phenoxyethyl)-aminomethyl-1,4-benzodioxane hydrochloride (WB4101) (8.7), and 8-[2-[4-(2-methoxy-phenyl)-L-piperazinyl]-8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY7378) (7.3). We have compared the levels of mRNA expression of three α_1 -adrenoceptor subtypes in rabbit tissues using the competitive reverse transcription/polymerase chain reaction (RT/PCR) assay. In most rabbit tissues except heart, α_{1a} -adrenoceptor mRNA was expressed 10 folds more than the other two subtypes. However, binding experiments with [3 H]prazosin and [3 H]KMD3213 in rabbit tissues revealed a poor relationship between binding density and mRNA level. Especially, α_{1b} binding sites were exclusively predominant in spleen, whereas the α_{1b} subtype was minor at the mRNA level. These results indicate a high identity of structural and pharmacological profiles of three distinct α_1 -adrenoceptor subtypes between rabbit and other species, but there are species differences in their distribution. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: α_{1a}-Adrenoceptor; α_{1b}-Adrenoceptor; α_{1d}-Adrenoceptor; Rabbit; Molecular cloning; Pharmacology; Tissue distribution

1. Introduction

 α_1 -Adrenoceptors are a heterogeneous family (Minneman and Esbenshade, 1994; Michel et al., 1995; Hieble et al., 1995; Graham et al., 1996). Presently, at least three distinct α_1 -adrenoceptor subtypes (α_{1a} , α_{1b} , and α_{1d} , with lowercase letters) have been cloned that exhibit pharmacological equivalence to the native α_{1A} -, α_{1B} -, and α_{1D} -adrenoceptors (with uppercase letters). Each subtype shows wide tissue distribution and coexistence at the mRNA level in humans and rats, but the functional dominance in adrenergic responses varies among tissues; for example, a pre-

E-mail address: muramatu@fmssa.fukui-med.ac.jp (I. Muramatsu).

dominant involvement of α_{1D} in thoracic aorta (Kenny et al., 1995; Deng et al., 1996; Muramatsu et al., 1998), α_{1A} in kidney and caudal artery (Eltze et al., 1991; Blue et al., 1995; O'Malley et al., 1998), and α_{1B} in spleen (Burt et al., 1995) of rats. The contractile response to noradrenaline has been demonstrated to be mediated through α_{1B} -adrenoceptors in human mesenteric artery (Testa et al., 1996; Takahashi et al., 1999). In rabbit also, the functional predominance of the α_{1B} subtype has been demonstrated in the circulatory system such as thoracic aorta and carotid artery (Muramatsu 1991; Oshita et al., 1993). However, the rabbit α_{1b} -adrenoceptor has not yet been cloned although the other α_1 subtypes (α_{1a} and α_{1d}) have been done (Miyamoto et al., 1997; Suzuki et al., 1997).

In the present study, we cloned the rabbit α_{1b} subtype, and its pharmacological characterization and tissue distribution were compared with those of rabbit α_{1a} and α_{1d} subtypes.

 $^{^{\}ast}$ Corresponding author. Tel.: +81-776-61-3111; fax: +81-776-61-8130.

2. Methods

2.1. cDNA library screening and sequencing

Rabbit brain cDNA library in $\lambda gt11$ (Clontech) was screened with a 800 bp DNA fragment which was polymerase chain reaction (PCR) amplified from rabbit genomic DNA using a pair of primers designed after the hamster α_{1b} -adrenoceptor sequence; 5'-GGACACCGGC-CACAACACATC-3' and 5'-CCCTTGGCCTTG-GTACTGCTGAG-3'. An isolated clone was subcloned into pCR3 mammalian expression vector (Invitrogen) and the nucleotide sequence was analyzed using overlapping templates by the dideoxy chain termination method in an ABI 373A DNA sequencer.

2.2. Cos-7 cell transfection

The plasmid clone constructed in pCR3 was transfected into Cos-7 cells with Lipofectamine (GIBCO) and the cells were harvested 72 h after transfection and stored at -80° C until the binding experiment.

2.3. Membrane preparation and binding experiment

The harvested cells were resuspended with ice-cold assay buffer (50 mM Tris-HCl, 1 mM EDTA, pH 7.4), homogenized by sonication and centrifuged at $3000 \times g$ for 10 min at 4°C. The supernatants were further centrifuged at $75,000 \times g$ for 30 min at 4°C and the resulting pellets were resuspended in the assay buffer for binding experiments. The saturation experiment was done in the range of 10-2000 pM of [³H]prazosin. The displacement experiment was done in the presence of 200 pM of [³H]prazosin with various concentrations of unlabelled drugs. Assays were done in duplicate and non-specific binding was defined in the presence of 0.3 µM tamsulosin. Membranes were incubated for 45 min at 30°C in a final 1 ml volume and then filtered onto Whatmann GF/C glass filters presoaked in 0.3% polyethyleneimine for 15 min. The filters were washed three times with ice-cold wash buffer (50 mM Tris-HCl, pH 7.4) and the bound radioactivity was determined in a liquid scintillation counter. Binding affinities of [3H] ligands and unlabelled drugs were expressed as the negative logarithm of the equilibrium dissociation constant (p K_d and p K_i , respectively). Binding data were analyzed in a GraphPAD Prism. When the slope factor was close to unity, concentrations of competing agent producing 50% displacement of [${}^{3}H$]prazosin (IC₅₀) were converted to K_{i} values with the Cheng-Prusoff approximation (Cheng and Prusoff, 1973). Protein was measured with bovine serum albumin as a standard (Bradford, 1976).

For preparation of native receptors, Japanese white rabbits were killed under pentobarbital anesthesia, and the

tissues (thalamus, cortex, prostate, liver, spleen, kidney, aorta, and heart) were isolated immediately thereafter. The tissues were homogenized in 20 vol of ice-cold buffer (Tris-HCl 50 mM, NaCl 100 mM, EDTA 2 mM, pH 7.4) with a Polytron (setting 8, 15 s \times 3) and filtered through four layers of cheesecloth. The supernatants were centrifuged at $80,000 \times g$ for 30 min, and the resulting pellets were suspended in the ice-cold assay buffer mentioned above, and then again centrifuged at $80,000 \times g$ for 30 min. All procedures were done at 4°C, and the final pellets were resuspended in assay buffer. Saturation experiments were done with various concentrations (30-2000 pM) of [³H]prazosin or [³H]KMD3213. Non-specific binding was determined with 0.3 µM tamsulosin for [³H]prazosin and with 0.3 μM prazosin for [³H]KMD3213, respectively. The other experimental conditions were the same as those described for recombinant receptor binding.

2.4. Total RNA preparation

Male Japanese white rabbits were anesthetized with sodium pentobarbital and were killed by exanguination. Tissues were rapidly removed, dissected, and frozen in liquid nitrogen and then stored at -80° C. Total cellular RNA was extracted according to the procedure of Chomczynski and Sacchi (1987).

2.5. Construction and RNA synthesis of competitor

Tissue distribution of the three α_1 -adrenoceptor subtypes was examined with reverse transcription (RT)/PCR assays using a competitive internal standard. The competitor was constructed as follows. At first, a 60-bp Sma I/Rsa I fragment of pBluescript II was inserted into the Msc I site of rabbit α_{1d} -adrenoceptor clone. Next, it was connected with α_{1a} specific sequences and then α_{1b} specific sequences by PCR (Fig. 5A). The resulting competitor DNA fragment was subcloned into the Sma I site of pBluescript SK⁺II and was transcribed with T7 RNA polymerase (GIBCO BRL). Competitor RNA was isolated from the transcription reaction by the method of Chomczynski and Sacchi (1987).

The following primers were used 5'-CATCGTGGTCGGCTGCTCGTC-3' as forward primer and 5'-GGCTGTAGGCAGGCTGATT-3' as reverse primer for α_{1a} -adrenoceptor; 5'-AGGAGCCGGCACCCAATGATGA-3' as forward and 5'-GGCACTGGCACCCGAGGAT-3' as reverse for α_{1b} -adrenoceptor; 5'-CTCCGTGCGCCTCCAAGT-3' as forward and 5'-GGGTAGATGAGTGGGTTCAC-3' as reverse for α_{1d} -adrenoceptor.

The size of the resulting PCR products (competitor/target) was 490:442, 604:549, and 270:210 bp for α_{1a} -, α_{1b} -, and α_{1d} -adrenoceptor subtypes, respectively.

2.6. Competitive RT / PCR assay

To quantify the mRNA level of an adrenoceptor subtype in rabbit tissues, a trace of competitor RNA was co-transcribed and co-amplified in a RT/PCR assay. Briefly, the tissue RNA (250 ng) was premixed with the competitor RNA (1 pg) and was reverse transcribed with Moloney murine leukemia virus reverse transcriptase

(GIBCO BRL) using a random primer (dN6) at 37°C for 1 h. The resulting cDNA was amplified with Pwo polymerase (Boehringer Mannheim) using a subtype-specific pair of primers under the following conditions: one cycle at 98°C for 3 min; 32 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 10 s, and extension at 72°C for 15 s. PCR products were electrophoresed in 3.5% polyacrylamide gel which was stained with ethidium bromide. The

10 ATGAATCCCGACCTGG	20	30	40	50	60	70	80 90
M N P D L D	T G	H N T S	A P A	H W G E	L K N	A N F	T G P N Q
100 ACCTCTAGCAACTCCT	110	120 CAGCTGGACGT	130	140	150	160	170 180
T S S N S S	L P	Q L D V	T R A	I S V G	L V L	G A F	I L F A I
190 GTGGGCAACATCCTTG	200 TCATTCTC		220			250	260 270
V G N I L V	I L	S V A C	N R H	L R T P			
280 GACCTGCTGCTGAGCT	290	300	310	320		340	350 360
D L L L S F	T V	LPFS	A A L		Y W V	L G R	
370 TGGGCGGCCGTGGACG	380	390	400	410	420	430	440 450
W A A V D V		CTAS	I L S		S I D	R Y I	G V R Y S
460 CTCCAGTACCCCGCGC	470	480	490	500	510	520	530 540
L Q Y P A L	V T	RRKA	I L A	L L S V	WVL	S T V	I S I G P
550 CTGCTTGGCTGGAAGG	560	570	580	590 TCCCCTC \ CTC	600		620 630
L L G W K E	P A	P N D D	K E C	G V T E	E P F	Y A F	F S S L G
	650	660	670	680 ССТСТАСАТСС	690 TGGCCAAGAG	700	710 720
S F Y I P L	A V	I L V M	Y C R	V Y I V	A K R	T T K	N L E A G
730 GTCATGAAAGAGATGT	740 CCAATTCG	750 AAGGAGCTGAC	760	770	780 \$ CTTTTC \$ TG 2	790	800 810
V M K E M S							
820 AAGGGCCACAACCCCA	830 GGAGTTCC			860 GTTCTCCAGGG			890 900
AAGGGCCACAACCCCAG	GGAGTTCC. S S	ATAGCTGTCAA I A V K	ACTTTTTAA L F K	GTTCTCCAGGG F S R E	AAAAGAAAGO K K A	AGCCAAGAC	CTTGGGCATCGTGGTC
AAGGGCCACAACCCCA K G H N P R 910	GGAGTTCC. S S VI 920	ATAGCTGTCAA I A V K 930	ACTTTTTAA L F K 940	GTTCTCCAGGG, F S R E 950	AAAAGAAAGO K K A - 960	AGCCAAGACG A K T 970	CTTGGGCATCGTGGTC L G I V V980 990
AAGGGCCACAACCCCACKGHNPCCCAC	GGAGTTCC S S VI 920 GCTGGCTT W L	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I	ACTTTTTAA L F K 940 CACCCTCCC T L P	GTTCTCCAGGG; F S R E 950 ACTCGGCTCCC	AAAAGAAAGO K K A - 960 IGTTCTCCAO F S T	AGCCAAGACO A K T 970 CCTGAAGCCO	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTG G M F I L C	GGAGTTCC. S S VI 920 GCTGGCTT W L V 1010	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020	ACTTTTTAA L F K 940 CACCCTCCC T L P	GTTCTCCAGGG; F S R E 950 ACTCGGCTCCCC L G S L	AAAAGAAAGC	AGCCAAGACC A K T 970 CCCTGAAGCCC L K P 1060	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTG G M F I L C	GGAGTTCC. S S VI 920 GCTGGCTT W L V 1010 TGGGCTAT	ATAGCTGTCAA I A V K 930 CCCTTCTCAT P F F I II 1020 TTCAACAGCTG	ACTTTTAA L F K 940 CACCCTCCC T L P 1030	GTTCTCCAGGGG F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACC	AAAAGAAAGC K K A - 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG	PAGCCAAGACC A K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090	GGAGTTCC. S S VI 920 GCTGGCTT W L V 1010 TGGGCTAT G Y	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F I II 1020 TTCAACAGCTG F N S C	L F K 940 CCACCCTCCC T L P 1030 CCCTCAACCC L N P	GTTCTCCAGGG/F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P	AAAAGAAAGC K K A 960 IGTTCTCCAC F S T 1050 CGTGCTCCAG C S S	PAGCCAAGACCAA K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L	GGAGTTCC. S S VI 920 GCTGGCTT W L V 1010 TGGGCTAT G Y 1100 AGTGCCCC	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCG	ACTTTTTAA L F K 940 CACCCTCCC T L P 1030 CCTCAACCC L N P 1120 CCCCCCCTCG	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCC	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 FGGGCGGTTG	PAGCCAAGACC A K T 970 CCCTGAAGCC L K P 1060 CCAAGGAGTTC K E F	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q	GGAGTTCC. S S : VI 920 GCTGGCTT W L : V 1010 TGGGCTAT G Y : 1100 AGTGCCCC C P (1190	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R	ACTTTTTAA L F K	GTTCTCCAGGG/F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCC R R R L	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGTTC G G C	PAGCCAAGACCA A K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCGCCTACACC A Y T	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q	GGAGTTCC. S S S S S S S S S S S S S S S S S S S	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCG G R R R 1200 CAGTCGCGCAA	ACTTTTTAA L F K 940 CACCCTCCC T L P 1030 CCCTCAACCC L N P 1120 CCCGCCGTCG R R R 1210 CGGACTCGCT	GTTCTCCAGGG/FSREE	AAAAGAAAGC K K A 960 TGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGTTG G G C 1230 GCAGCTGCCC	CAGCCAAGACC A K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCGCCTACACC A Y T 1240 CGAGCGGCAGC	CTTGGGCATCGTGGTC L G I V V 980 990 CCCGGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q 1180 CGCGGCGGCGCTCGCTGGCR G G S L E	GGAGTTCC. S S : VI 920 GCTGGCTT W L : V 1010 TGGGCTAT G Y : 1100 AGTGCCCC C P (1190 AGCGCTCG R S (1280	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCG G R R R 1200 CAGTCGCCAA Q S R K 1290	ACTTTTTAA L F K	GTTCTCCAGGG/F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCC R R R L 1220 GGACGACAGCGC D D S G	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGTTCG G G C 1230 GCAGCTGCCT S C L	CAGCCAAGACC A K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCGCCTACACC A Y T 1240 CGAGCGGCAGC S G S	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q 1180 CGCGGCGCGCTCGCTGGC	GGAGTTCC. S S : VI 920 GCTGGCTT. W L : V 1010 TGGGCTAT. G Y : 1100 AGTGCCCC. C P : 1190 AGCGCTCG. R S : 1280 CGGGCTAC.	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCGG	ACTTTTTAA L F K	GTTCTCCAGGG/FSREE	AAAAGAAAGC K K A 960 TGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGGTTG G G C 1230 GCAGCTGCCT S C L 1320 TGTACGCCTT	CAGCCAAGACCAAAAAAAAAAAAAAAAAAAAAAAAAAA	CTTGGGCATCGTGGTC L G I V V 980 990 CCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGGCCC
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q 1180 CGCGGGCGGCTCGCTGGCR G G S L E 1270 TCGGCCTCGCCGAGCCCS A S P S P S P 1360	GGAGTTCC. S S	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCGGG L G R G	ACTTTTTAA L F K	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCCCC R R R L 1220 GGACGACAGCGC D D S G 1310 GCCCGTCGAGCC P V E L 1400	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGTTCG G G C 1230 GCAGCTGCCT S C L 1320 TGTACGCCTT Y A F	CAGCCAAGACCAAAAAAAAAAAAAAAAAAAAAAAAAAA	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGGCGCC K A P G A 1440 1440
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGG M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCK I L G C Q 1180 CGCGGCGGCTCGCTGGCK G G S L E 1270 TCGGCCTCGCCGAGCCCS A S P S P	GGAGTTCC. S S : VI 920 GCTGGCTT. W L : V 1010 TGGGCTAT. G Y : 1100 AGTGCCCC. C P : 1190 AGCGCTCG. R S : 1280 CGGGCTAC. G Y : 1370 CGCCCGAG	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCGGCAA CTGGGCCGCGGCGAA CTGGGCCGCGGCGGGCGCGCGGCGGCGGCGGCGGCGGCGG	ACTTTTTAA L F K	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCC R R R L 1220 GGACGACAGCG D D S G 1310 GCCCGTCGACGC P V E L 1400 CCACGACTCGC	AAAAGAAAGC K K A 960 TGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGGTTG G G C 1230 GCAGCTGCCT S C L 1320 TGTACGCCTT Y A F 1410 GCCAGCTCTT	CCCCGAGGGCACACCCCAACCCCAACCCCAACCCCCAACCCCAACCCCC	CTTGGGCATCGTGGTC L G I V V 980 990 CCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGCCCC K A P G A 1430 1440 GCTCCTGGCAGACCCC
AAGGGCCACAACCCCA K G H N P R 910 GGTATGTTCATCTTGTG G M F I L C 1000 AAGGTGGTCTTCTGGCC K V V F W L 1090 CGCATCCTCGGGTGCC R I L G C Q 1180 CGCGGCGGCGCTCGCTGG R G G S L E 1270 TCGGCCTCGCCGAGCCC S A S P S P 1360 CTGCTGAGCCTGCCCG L L S L P A	GGAGTTCC. S S	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCCGC L G R G 1380 CCCGCCGGCCGCCG P A G R	ACTTTTTAA L F K	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCCCC R R R L 1220 GGACGACAGACAGCG D D S G 1310 GCCCGTCGCACGACTCGGC P V E L 1400 CCACGACTCGCCGC H D S G	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 FGGGCGGTTC G G C 1230 GCAGCTGCCT S C L 1320 FGTACGCCTT Y A F 1410 GCCAGCTCTT Q L F	CAGCCAAGACCA K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCCCGACTACACCA Y T 1240 CCACCCGAGTGC P E W 1420 CCACCTTCAAC T F K	CTTGGGCATCGTGGTC L G I V V 980 990 CCCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGGCCC K A P G A 1430 1440 GCTCCTGGCAGACCCC L L A D P 1520 1530
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTGGCM F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCK I L G C Q 1180 CGCGGCGGCTCGCTGGCCCCGCCCCGCCCCCCCCCCCC	GGAGTTCC. S S	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCCGCAA Q S R K 1290 CTGGGCCGCCGCAA Q S R K 1290 CTGGGCCGCCGCAA Q S R K 1470 TCCAGCAACGG	ACTTTTTAA L F K	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCC R R R L 1220 GGACGACAGCAC D D S G 1310 GCCCGTCGACAGCC P V E L 1400 CCACGACTCGCCG H D S G 1490 GTCTGCGGCCGC	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGGTTG G G C 1230 GCAGCTGCCT S C L 1320 TGTACGCCTT Y A F 1410 GCCAGCTCTT Q L F 1500 ACGTGGCCAA	CCCCGAGGGCACCCCA K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCCCCAACCCCCACCCCA Y T 1240 CCCCCGAGTGC P E W 1420 CCCCCGAGTGC T F K 1510 CCCCGGCACCCCCACCCCACCCCCACCCCCACCCCCACCCCACCCC	CTTGGGCATCGTGGTC L G I V V 980 990 CCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGCCCC K A P G A 1430 1440 GCTCCTGGCAGACCCC L L A D P 1520 1530 GGGCTTCAAAAGCAAC
AAGGGCCACAACCCCACK G H N P R 910 GGTATGTTCATCTTGTG G M F I L C 1000 AAGGTGGTCTTCTGGCCK V V F W L 1090 CGCATCCTCGGGTGCCCR I L G C Q 1180 CGCGGCGCGCTCGCTGG R G G S L E 1270 TCGGCCTCGCCGAGCCCS A S P S P 1360 CTGCTGAGCCTGCCCGG L L S L P A 1450 GAGAGCCCCGGGACAG E S P G T D	GGAGTTCC. S S	ATAGCTGTCAA I A V K 930 CCCTTCTTCAT P F F I II 1020 TTCAACAGCTG F N S C 1110 GGCCGCCGCCGG G R R R 1200 CAGTCGCGCAA Q S R K 1290 CTGGGCCGCCGCCAA CCCGCCGGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC	ACTTTTTAA L F K	GTTCTCCAGGG, F S R E 950 ACTCGGCTCCCC L G S L 1040 TATCATCTACCC I I Y P 1130 CCGTCGCCGCCC R R R L 1220 GGACGACAGCAC D D S G 1310 GCCCGTCGACAGCC P V E L 1400 CCACGACTCGCCG H D S G 1490 GTCTGCGGCCGC	AAAAGAAAGC K K A 960 FGTTCTCCAC F S T 1050 CGTGCTCCAG C S S 1140 TGGGCGGGTTG G G C 1230 GCAGCTGCCT S C L 1320 TGTACGCCTT Y A F 1410 GCCAGCTCTT Q L F 1500 ACGTGGCCAA	CCCCGAGGGCACCCCA K T 970 CCCTGAAGCCC L K P 1060 CCAAGGAGTTC K E F 1150 CCCCCAACCCCCACCCCA Y T 1240 CCCCCGAGTGC P E W 1420 CCCCCGAGTGC T F K 1510 CCCCGGCACCCCCACCCCACCCCCACCCCCACCCCCACCCCACCCC	CTTGGGCATCGTGGTC L G I V V 980 990 CCCGACGCCGTGTTC P D A V F 1070 1080 CAAGCGCGCCTTCGTG K R A F V 1160 1170 CTACCGGCCGTGGACG Y R P W T 1250 1260 CCAGCGGACCCTGCCC Q R T L P 1340 1350 GAAGGCGCCCGCCCC K A P G A 1430 1440 GCTCCTGGCAGACCCC L L A D P 1520 1530 GGGCTTCAAAAGCAAC

Fig. 1. Nucleotide and amino acid sequences of rabbit α_{1b} -adrenoceptor. Dashed lines indicate transmembrane domains I–VII.

intensity of bands was quantitated with the ATTO Densitograph System.

To compare the expression levels of mRNA of three α_1 -adrenoceptor subtypes, competitive RT/PCR was done in cerebellum with a pair of primers specific for each subtype, using 500 ng of total RNAs premixed with serially diluted competitor RNA. The ratios of intensity of competitor band and target band were plotted against the dose of competitor RNA and the apparent equivalent point for each subtype was determined as the ratio was estimated to be one. The equivalence of subtypes mRNA to competitor RNA was finally calculated, taking band size factors into account, i.e. multiplying apparent equivalence by size factor. The size factor is a ratio of sizes of competitor band and target band and was 1.11, 1.10, and 1.29 for α_{1a} -, α_{1b} - and α_{1d} -adrenoceptor, respectively.

In preliminary experiments, RT/PCR products from the competitor and tissue RNA were digested with band-specific restriction endonucleases (EcoR V, Bgl II, BamH I, and Msc I for competitor and α_{1a} -, α_{1b} -, and α_{1d} -adren-

oceptors, respectively) to confirm their authenticity (data not shown).

2.7. Drugs

The drugs used and their sources were the following: (-)-(R)-1-(3-hydroxypropyl)-5-[2-[[2-(2,2,2-trifluoroethoxy) phenoxy]-ethyl]amino]propyl]indoline - 7 - carboxamide (KMD3213) and tamsulosin HCl (tamsulosin), from Kissei Pharmaceutical (Matsumoto, Japan); prazosin HCl, (-)-noradrenaline bitartrate, (-)-adrenaline hydrogen tartrate, oxymetazoline hydrochloride, and methoxamine hydrochloride, from Sigma (St. Louis, USA); 2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4-benzodioxane hydrochloride (WB4101), 8-[2-[4-(2-methoxy-phenyl)-L-piperazinyl]-8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY7378), rauwolscine hydrochloride, and 5-methylurapidil, from Research Biochemicals (Natick, USA); (±)-propranolol hydrochloride, from Nacalai (Kyoto, Japan); [³H]KMD3213 (49–52 Ci mmol⁻¹), from Amer-

	I I	
rabbit	1:MNPDLDTGHNTSAPAHWGELKNANFTGPNQTSSNSSLPQLDVTRAISVGLVLGAFILFAIVGNILVILSVACNRHLRTPTNYFIVNLAIA	90
hamster	1:QDT	90
human	1:	90
rat	1:DDT	90
	II IV	
rabbit	91:DLLLSFTVLPFSAALEVLGYWVLGRIFCDIWAAVDVLCCTASILSLCAISIDRYIGVRYSLQYPALVTRRKAILALLSVWVLSTVISIGP	
hamster	91:T	
human	91:	
rat	91:T	180
	V	
rabbit	181:LLGWKEPAPNDDKECGVTEEPFYAFFSSLGSFYIPLAVILVMYCRVYIVAKRTTKNLEAGVMKEMSNSKELTLRIHSKNFHEDTLSSTKA	270
_ 011010 _ 0	181:	
	181:L	
rat	181:	270
	VI VII	
	271: KGHNPRSSIAVKLFKFSREKKAAKTLGIVVGMFILCWLPFFITLPLGSLFSTLKPPDAVFKVVFWLGYFNSCLNPIIYPCSSKEFKRAFV	
	271:A	
	271:A	
rat	271:A	360
rabbit	361:RILGCOCPG-RRRRRRRRLGGCAYTYRPWTRGGSLERSOSRKDSLDDSGSCLSGSORTLPSASPSPGYLGRGAOPPVELYAFPEWKAPG	449
hamster	361:R-SGA	448
human	361:P	450
rat	361:R-GG	448
111.	450	E4.0
	450:ALLSLPAPEPAGRRGRHDSQQLFTFKLLADPESPGTDGGSSNGGCESAADVANGQPGFKSNMPLAPGHF 449:ELPGEE.DADATT.L	518
	449:E	515 519
	451:Q. 449:ELPGE.DTDTTT.L	519
Idl	##5;p	STS

Fig. 2. Comparison of amino acid sequence of α_{1b} -adrenoceptors of rabbit, hamster, human, and rat. Dots are substituted for identical amino acids.

sham (England); and [³H]prazosin (77.2 Ci mmol⁻¹), from NEN (Boston, USA).

3. Results

3.1. Cloning of rabbit α_{1b} -adrenoceptor

A positive clone was isolated from the screening of 5×10^5 recombinants. This had a 2.5 kbp insert containing an open reading frame of 1557 bp that encodes a 518-amino-acid peptide as shown in Fig. 1. Comparing the whole amino-acid sequence of this peptide with those of α_{1b} -adrenoceptors of hamster (Cotecchia et al., 1988), human (Ramarao et al., 1992) and rat (Voigt et al., 1990), the identity was more than 98% (Fig. 2). However the identity between this peptide sequence and those of α_{1a} -and α_{1d} -adrenoceptors of rabbit (Miyamoto et al., 1997; Suzuki et al., 1997) was low (less than 57%, Fig. 3) in whole length. We concluded that the clone obtained encodes the rabbit α_{1b} -adrenoceptor. This nucleotide sequence was submitted to GenBank with an accession number, AF156106.

3.2. Comparison of pharmacological profiles of rabbit α_1 -adrenoceptor subtypes

Three rabbit α_1 -adrenoceptor subtypes were expressed in Cos-7 cells and their binding characters were investigated by using $[^3H]$ prazosin as a radioligand. Rabbit α_{1a} -

Table 1 Pharmacological profile of recombinant α_1 -adrenoceptor subtypes of rabbit

Data are means \pm S.E. from three experiments. Negative log of the equilibrium dissociation constant (p K_i) for each drug was calculated.

	pK_i		
	α_{1a}	α_{1b}	α_{1d}
Prazosin	9.4 ± 0.05	10.3 ± 0.07	9.2 ± 0.03
KMD3213	9.8 ± 0.25	8.5 ± 0.09	8.1 ± 0.23
WB4101	9.4 ± 0.16	8.7 ± 0.15	8.7 ± 0.07
Tamsulosin	9.7 ± 0.27	9.5 ± 0.17	9.2 ± 0.09
BMY7378	6.6 ± 0.15	7.3 ± 0.12	8.5 ± 0.04
5-Methylurapidil	8.4 ± 0.02	6.7 ± 0.80	7.1 ± 0.29
Rauwolscine	< 6	< 6	< 6
Propranolol	< 5	< 5	< 5
Noradrenaline	5.8 ± 0.07	5.3 ± 0.18	7.6 ± 0.39
Adrenaline	6.1 ± 0.18	5.7 ± 0.12	6.6 ± 0.45
Oxymetazoline	8.4 ± 0.36	7.3 ± 0.15	6.6 ± 0.32
Methoxamine	5.2 ± 0.16	< 4	4.5 ± 0.03

adrenoceptor showed high affinity for prazosin, KMD3213, WB4101, tamsulosin, 5-methylurapidil, oxymetazoline and methoxamine and low affinity for BMY7378. Rabbit α_{1b} -adrenoceptor exhibited high affinity for prazosin and tamsulosin and low affinity for KMD3213, BMY7378, 5-methylurapidil, oxymetazoline, and methoxamine. Rabbit α_{1d} -adrenoceptor displayed high affinity for prazosin, tamsulosin, BMY7378, and noradrenaline and low affinity for KMD3213, 5-methylurapidil, and oxymetazoline. All three subtypes had low affinity for rauwolscine and propranolol (specific ligands for α_{2} - and β -adrenoceptors, respec-

-----MVFLSGNASDS-SNCTH 16

```
b
   1:MN-PD-LD-T--G-H-N--T--S-A---P-A-H-WGE-L--KNANFTG-PNQT-----S----S---N-SSL--P-----QLDV.R 44
   1:MTFRDLLSVTFEGPRPDISAGGSGAGGAGAGAGAGATASSESPAVGGVPGÄAGGGGGGSVVGAGSGEDNRSSAGEPG.AGGGGEV.G.A 90
                                             ----- II -----
a 17:PPAP-VNISKAILLGVILGGLILFGVLGNILVILSVACHRHLHSVTHYYIVNLAVADLLLTSTVLPFSAIFEILGYWAFGRVFCNIWAAV 105
  45:A----I---SVG.-.-.AF...AIV..........N...RTP.N.F.....I.....SF......AL.V....VL.I..D..... 124
 91:AVGGL.VSAQSVGV..F.AAF..TA.A..L......N...QT..N.F......SA......TM.V..F....A..DV.... 180
                                     ----- IV -----
a 106:DVLCCTASIISLCVISIDRYIGVSYPLRYPTIVTQRRGLRALLCVWAFSLVISVGPLFGWRQPAPDDETICQINEEPGYVLFSALGSFYV 195
a 196:PLTIILAMYCRVYVVAKRESRGLKSGLKTDKSDSEQVTLRIHRKNA--PAGGSGVA-SAK-N--KTHFSVRLLKFSREKKAAKTLGIVVG 279
d 271: MAV.VV........RSTT.S.EA.V.RERGKASE.V....CRG.ASG.D.APGTRG..GHTFRSSL.......A.... 360
                          ----- VII -----
a 280:CFVLCWLPFFLVMPIGSFFPDFKPPETVFKIVFWLGYLNSCINPIIYPCSSQEFKKAFQNVLKIQC-L-RRKQSSKHALGYTLHAPSQAL 367
b 302:M.I.....ITL.L.L.STL...DA...V.....F...L.....K...R..VRI.GC..PGR..RRRRRLG.CAYTYRPWTR 391
d 361:V....F...F.L.L..L.QL.S.G...VI....F...V..L....R...R..LRL.RC..RRR..RRPLWRV--.GH.WRAS.G 448
a 368:EG--QHKDMVRIPV-GSGETFYKISKTD-GVCEWKFFSSMPRGSARITVP-KDQSACTTARVRSKSFLQVCCCVGPSTPNPGENHOVPTI 452
b 392:G.SLERSQSRKDSLDD..SCLSGSQR.LPSASPSPGYLGRGAQPPVELYAFPEWK.PGALLSLPAPEPAGRRG-RHDSGQLFTFKLLAD- 479
d 449:G.PHPDCALSAGA-ALP.AALALTAAPAPSSAAAPEGQAAGA.RRKPPCAFREWRLLGPL.RPTTQLRAKVSSLSHKIRAG.AQRAEAAC 537
a 453:KIHTISLSENGEEV-----
                                                                                  466
b 480: PESPGTDGGSSNGGCESAADVANGOPGFKSNMPLAPGHF
                                                                                 518
d 538:ALRSEVEAVALSVARDVAEDNTCQAYELADYRNLRETDI
                                                                                  576
```

Fig. 3. Comparison of amino acid sequence among three adrenoceptor subtypes in rabbit. Dots are substituted for identical amino acids.

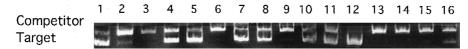


Fig. 4. Tissue distribution of α_{1b} -adrenoceptor mRNA in rabbit. Total RNA from each tissue was mixed with competitor RNA and was reverse transcribed, PCR amplified and separated by electrophoresis as described in Section 2. The products from competitor (604 bp) and from tissue RNA (549 bp) are indicated by arrows on the left. Rabbit tissues analyzed were heart, kidney, liver, lung, spleen, skeletal muscle, thoracic aorta, cerebellum, hippocampus, brainstem, cerebral cortex, thalamus, vas deferens, prostate, submaxillary gland, and parotid gland from lanes 1 to 16, respectively.

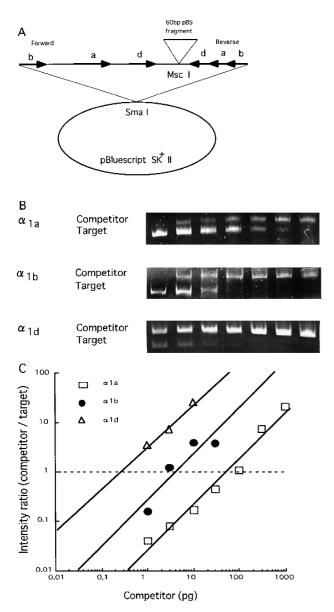


Fig. 5. Tissue distribution of mRNA of α_1 -adrenoceptor subtype in rabbit. (A) Illustration of competitor in which three α_1 -subtype-specific primer pairs are constructed. Arrows shown as forward and reverse of a, b and d represent PCR primers for α_{1a} -, α_{1b} -, and α_{1d} -adrenoceptor sequences. (B) A representative result of competitive RT/PCR in rabbit cerebellum is shown. The total RNA was mixed with serially diluted competitor RNA (1, 3, 10, 30, 100, 300, and 1000 pg from the left), and was co-transcribed with random hexamer. Then, it was PCR-amplified with subtype-specific pair of primers. (C) amount of mRNA of three α_1 -adrenoceptor subtypes in rabbit cerebellum. The ratios of intensity of competitor band and target band are plotted based on data from three independent experiments and the apparent equivalent point was defined as where the ratio is one.

tively). These binding affinities at rabbit α_1 -adrenoceptor subtypes are summarized in Table 1. [3 H]KMD3213 at 0.6 and 1 nM bound to α_{1a} - but not to α_{1b} - and α_{1d} -adrenoceptors (data not shown).

3.3. Competitive RT / PCR analysis

A representative result of competitive RT/PCR for α_{1b} -adrenoceptor in rabbit tissues is shown in Fig. 4. Relatively high expression of α_{1b} -adrenoceptors was observed in thalamus, thoracic aorta, brain stem, spleen, and heart. However, while a significant amount of mRNA expression of the α_{1b} -adrenoceptor was reported in both human (Faure et al., 1995) and rat (Scofield et al., 1995) liver, it was not detected in rabbit liver.

Next, in order to compare the levels of mRNA expression of three subtypes of the α_1 -adrenoceptor in various tissues, the equivalence of each subtype mRNA was evaluated against competitor RNA. As shown in Fig. 5, the apparent equivalence of mRNA of the subtypes as 52, 4.1, and 0.43 pg competitor RNA and the final equivalence was estimated as 57.7, 4.5, and 0.55 pg RNA in rabbit cerebellum, taking size factor into account, for α_{1a} -, α_{1b} -, and α_{1d} -adrenoceptors, respectively. Previously, we reported relative mRNA levels of α_{1a} - (Miyamoto et al., 1997) and

Table 2 Relative level of α_1 -adrenoceptor subtype mRNA in various rabbit tissues Relative mRNA levels in each tissue were normalized, taking the level of

Relative mRNA levels in each tissue were normalized, taking the level of α_{1b} mRNA in cerebellum as one. Data shown are means \pm S.E. from three experiments.

Tissue	Relative mRNA Level				
	α_{1a}	α_{1b}	α_{1d}		
Heart	< 0.1	1.7 ± 0.2	< 0.1		
Kidney	2.5 ± 1.3	0.1 ± 0.1	< 0.1		
Liver	96.1 ± 62.7	< 0.1	< 0.1		
Lung	16.6 ± 5.1	0.8 ± 0.1	0.4 ± 0.0		
Spleen	9.0 ± 2.5	1.7 ± 0.2	< 0.1		
Skeletal muscle	< 0.1	< 0.1	< 0.1		
Thoracic aorta	57.7 ± 14.1	2.6 ± 1.3	0.6 ± 0.1		
Cerebellum	12.8	1	0.1 ± 0.0		
Hippocampus	19.3 ± 1.3	< 0.1	< 0.1		
Brain stem	192.0 ± 9.0	1.9 ± 0.6	0.1 ± 0.0		
Cerebral cortex	20.5 ± 2.5	1.0 ± 0.1	0.4 ± 0.1		
Thalamus	157.4 ± 21.8	13.5 ± 2.0	< 0.1		
Vas deferens	19.3 ± 2.5	< 0.1	0.7 ± 0.2		
Prostate	3.8 ± 1.3	< 0.1	0.5 ± 0.1		
Submaxillary gland	< 0.1	< 0.1	< 0.1		
Parotid gland	< 0.1	0.3 ± 0.1	< 0.1		

 α_{1d} -adrenoceptor (Suzuki et al., 1997) in various rabbit tissues. In the case of rabbit α_{1a} -adrenoceptor, we now repeated the competitive RT/PCR because the pair of primers was distinct from that used in the previous experiments. For the rabbit α_{1d} -adrenoceptor, we used the data from the previous report because the conditions for RT/PCR were identical. Based on the equivalence in rabbit cerebellum (Fig. 5), we normalized the relative mRNA level of each subtype, taking the level of α_{1h} mRNA in cerebellum as one (Table 2). Excepting heart, the α_{1a} subtype was dominant while the α_{1d} subtype was very minor in most tissues. This is quite unique to rabbit, since this kind of subtype distribution was reported for neither human (Hirasawa et al., 1993; Graham et al., 1996) nor rat (Rokosh et al., 1994; Graham et al., 1996). Notably, mRNA of α_{1a} -adrenoceptor was not detected in rabbit heart in contrast to human and rat hearts.

3.4. [³H]prazosin and [³H]KMD3213 binding to rabbit native tissue membranes

 α_1 -Adrenoceptor density at the protein level was evaluated in the binding study with [3 H]prazosin (1 and 2 nM) and [3 H]KMD3213 (0.6 and 1 nM) for total α_1 - and α_{1A} -adrenoceptor, respectively. Since the binding affinities

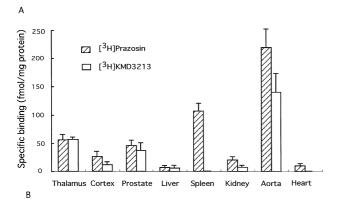


Fig. 6. Tissue distribution of binding sites for $\alpha_1\text{-adrenoceptor}$ subtypes. (A) shaded columns represent $[^3H]\text{prazosin}$ binding (total $\alpha_1\text{-adrenoceptor}$ density) and open columns represent $[^3H]KMD3213$ binding ($\alpha_{1A}\text{-adrenoceptor}$ density). Data are means $\pm S.E.$ of three experiments. (B) saturation binding experiments with $[^3H]\text{prazosin}$ and $[^3H]KMD3213$ in rabbit spleen membranes.

of these drugs are high (see Table 1 and Murata et al., 1999), it is possible to estimate the densities as approximations. As shown in Fig. 6A, the distribution of total α_1 -and α_{1A} -adrenoceptors varied among rabbit tissues tested. Most α_1 -adrenoceptors were α_{1A} subtype in thalamus, prostate, and liver, whereas α_{1B} subtype was detected in the heart and spleen. BMY7378 (0.1 μ M) did not significantly inhibit the binding of $[^3H]$ prazosin and $[^3H]$ KMD3213 in any of the tissues tested (data not shown), indicating that the α_{1D} subtype is negligible at the protein level

Some discrepancy was seen between mRNA level and binding density of α_1 -adrenoceptor subtypes in several tissues including spleen, where the α_{1a} -adrenoceptor is a major subtype at the mRNA level but the α_{1B} -subtype is predominant at the protein level (Table 2 and Fig. 6A). We, thus ran saturation experiments in spleen (Fig. 6B). These showed that specific binding was detectable in [³H]prazosin but not in [³H]KMD3213, confirming that the α_{1B} -subtype is predominant at the protein level in spleen. B_{max} value of [³H]prazosin was 100.6 ± 5.8 fmol/mg protein (n=3) which was in good agreement with that obtained in the two-point assay (106.6 ± 12.8 fmol/mg protein, Fig. 6A).

4. Discussion

4.1. Peptide sequence and binding character

The peptide sequence of the α_{1b} -adrenoceptor of rabbit had a high identity to those of hamster, human, and rat (Fig. 2), whereas it showed a lower identity to those of α_{1a} - and α_{1d} -adrenoceptors of rabbit. Pharmacological characterization also revealed the expected profile as α_{1b} -adrenoceptor, showing high affinity for prazosin and tamsulosin and low affinity for KMD3213, BMY7378, 5-methylurapidil, and methoxamine. The profiles of three α_{1} -adrenoceptor subtypes of rabbit were compatible with those of humans (Tseng-Crank et al., 1995; Weinberg et al., 1994; Esbenshade et al., 1995) and of rats (Perez et al., 1994). We concluded that rabbit has a similar α_{1} -adrenoceptor system to that of other mammalian species.

4.2. Distribution

Next, we investigated the mRNA distribution of three α_1 -adrenoceptor subtypes in rabbit tissues. As shown in Table 2, the α_{1a} -subtype was a predominant subtype in most tissues tested. However, the α_{1b} -subtype was the main α_1 -adrenoceptor in rabbit heart and was relatively abundant in thalamus, thoracic aorta, and spleen. In the case of the α_{1d} -subtype, the level of mRNA expression was very low compared to that of other subtypes in all rabbit tissues tested. This pattern of subtype distribution was distinct from that of rats or humans (Scofield et al.,

1995; Faure et al., 1995; Lomasney et al., 1991; Graham et al., 1996). Then, we examined α_1 -adrenoceptor distribution at the protein level by using [3H]prazosin and [3H]KMD3213. Based on the binding affinity profiles for both ligands (Table 1 and Murata et al., 1999), specific binding of [3H]prazosin and of [3H]KMD3213 was speculated to correspond to total α_1 - and α_{1a} -adrenoceptor densities, respectively. Comparison of mRNA level (Table 2) and binding density (Fig. 6A) shows that these parameters do not always correlate. For example, α_{1b} binding sites were not detected in thalamus in spite of significant expression of α_{1b} mRNA. On the other hand, α_{1b} binding sites alone were detected in the spleen, where greater amounts of α_{1a} mRNA than of α_{1b} mRNA were found. These results suggest that there is a tissue- and subtypespecific mechanism(s) to regulate expression of mRNA and protein of the α_1 -adrenoceptor in rabbit. The lack of α_{1d} -binding sites we found may be related to the low level of its mRNA and is also consistent with the reports that the α_{1d} -adrenoceptor is not detectable in binding experiments (Yang et al., 1997; Muramatsu et al., 1998).

4.3. Conclusions

In conclusion, the present study showed a high identity of structural and pharmacological characters of three subtypes in the α_1 -adrenoceptor system between rabbit and other mammalian species. However, there are species differences in their tissue distribution, implying that α_1 -adrenoceptor subtypes are heterologously involved in physiological responses among mammals.

Acknowledgements

The authors would like to thank Ms. N. Aoki for secretarial assistance and Ms. N. Saito for technical assistance. This work was supported in part by a grant from the Smoking Research Foundation of Japan and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

- Blue, D.R. Jr., Bonhaus, D.W., Ford, A.P., Pfister, J.R., Sharif, N.A., Shieh, I.A., Vimont, R.L., Willams, T.J., Clarke, D.E., 1995. Functional evidence equating the pharmacologically-defined alpha 1A- and cloned alpha 1C-adrenoceptor: studies in the isolated perfused kidney of rat. Br. J. Pharmacol. 115 (2), 283–294.
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
- Burt, R.P., Chapple, C.R., Marshall, I., 1995. Evidence for functional alpha 1A-(alpha 1C-) adrenoceptor mediating contraction of the rat epididymal vas deferens and an alpha 1B-adrenoceptor mediating contraction of the rat spleen. Br. J. Pharmacol. 115 (3), 467–475.
- Cheng, Y., Prusoff, W.H., 1973. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50

- percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22 (23), 3099–3108.
- Chomczynski, P., Sacchi, N., 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 (1), 156–159.
- Cotecchia, S., Schwinn, D.A., Randall, R.R., Lefkowitz, R.J., Caron, M.G., Kobilka, B.K., 1988. Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor. Biochemistry 85, 7159–7163.
- Deng, X.F., Chemtob, S., Varma, D.R., 1996. Characterization of alpha 1D-adrenoceptor subtype in rat myocardium, aorta and other tissues. Br. J. Pharmacol. 119 (2), 269–276.
- Eltze, M., Boer, R., Sanders, K.H., Kolassa, N., 1991. Vasodilatation elicited by 5-HT1A receptor agonists in constant-pressure-perfused rat kidney is mediated by blockade of alpha 1A-adrenoceptors. Eur. J. Pharmacol. 202 (1), 33–44.
- Esbenshade, T.A., Hirasawa, A., Tsujimoto, G., Tanaka, T., Yano, J., Minneman, K.P., Murphy, T.J., 1995. Cloning of the human alpha 1d-adrenergic receptor and inducible expression of three human subtypes in SK–N–MC cells. Mol. Pharmacol. 47 (5), 977–985.
- Faure, C., Gouhier, C., Langer, S.Z., Graham, D., 1995. Quantification of alpha 1-adrenoceptor subtypes in human tissues by competitive RT-PCR analysis. Biochem. Biophys. Res. Commun. 213 (3), 935–943.
- Graham, R.M., Perez, D.M., Hwa, J., Piascik, M.T., 1996. Alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ. Res. 78 (5), 737–749.
- Hieble, J.P., Bylund, D.B., Clarke, D.E., Eikenburg, D.C., Langer, S.Z., Lefkowitz, R.J., Minneman, K.P., Ruffolo, R.R. Jr., 1995. International Union of Pharmacology: X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol. Rev. 47 (2), 267–270.
- Hirasawa, A., Horie, K., Tanaka, T., Takagaki, K., Murai, M., Yano, J., Tsujimoto, G., 1993. Cloning, functional expression and tissue distribution of human cDNA for the α_{1c} -adrenergic receptor. Biochem. Biophys. Res. Commun. 195 (2), 902–909.
- Kenny, B.A., Chalmers, D.H., Philpott, P.C., Naylor, A.M., 1995. Characterization of an alpha 1D-adrenoceptor mediating the contractile response of rat aorta to noradrenaline. Br. J. Pharmacol. 115 (6), 981–986.
- Lomasney, J.W., Cotecchia, S., Lefkowitz, R.J., Caron, M.G., 1991.
 Molecular biology of alpha-adrenergic receptors: implications for receptor classification and for structure–function relationships.
 Biochim. Biophys. Acta 1095 (2), 127–139.
- Michel, M.C., Kenny, B., Schwinn, D.A., 1995. Classification of alpha 1-adrenoceptor subtypes. Naunyn-Schmiedeberg's Arch. Pharmacol. 352 (1), 1–10.
- Minneman, K.P., Esbenshade, T.A., 1994. Alpha 1-adrenergic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 34, 117–133.
- Miyamoto, S., Taniguchi, T., Suzuki, F., Takita, M., Kosaka, N., Negoro, E., Okuda, T., Kosaka, H., Murata, S., Nakamura, S., Akagi, Y., Oshita, M., Watanabe, Y., Muramatsu, I., 1997. Cloning, functional expression and tissue distribution of rabbit α_{1a} -adrenoceptor. Life Sci. 60 (23), 2069–2074.
- Muramatsu, I., 1991. Relation between adrenergic neurogenic contraction and alpha 1-adrenoceptor subtypes in dog mesenteric and carotid arteries and rabbit carotid arteries. Br. J. Pharmacol. 102 (1), 210–214.
- Muramatsu, I., Murata, S., Isaka, M., Piao, H.L., Zhu, J., Suzuki, F., Miyamoto, S., Oshita, M., Watanabe, Y., Taniguchi, T., 1998. Alpha 1-adrenoceptor subtypes and two receptor systems in vascular tissues. Life Sci. 62 (17–18), 1461–1465.
- Murata, S., Taniguchi, T., Muramatsu, I., 1999. Pharmacological analysis of the novel, selective α_{1d} -adrenoceptor antagonist, KMD-3213, and its suitability as a tritiated radioligand. Br. J. Pharmacol. 127 (1), 19–26.
- O'Malley, S.S., Chen, T.B., Francis, B.E., Gibson, R.E., Burns, H.D., DiSalvo, J., Bayne, M.L., Wetzel, J.M., Nagarathnam, D., Marzabadi, M., Gluchowski, C., Chang, R.S., 1998. Characterization of specific

- binding of [1251]L-762,459, a selective alpha 1A-adrenoceptor radioligand to rat and human tissue. Eur. J. Pharmacol. 348 (2–3), 287–295.
- Oshita, M., Kigoshi, S., Muramatsu, I., 1993. Pharmacological characterization of two distinct alpha 1-adrenoceptor subtypes in rabbit thoracic aorta. Br. J. Pharmacol. 108 (4), 1071–1076.
- Perez, D.M., Piascik, M.T., Malik, N., Gaivin, R., Graham, R.M., 1994. Cloning, expression, and tissue distribution of the rat homology of the bovine alpha 1C-adrenergic receptor provide evidence for its classification as the alpha 1A subtype. Mol. Pharmacol. 46 (5), 823–831.
- Ramarao, C.S., Denker, J.M., Perez, D.M., Galvin, R.J., Riek, R.P., Graham, R.M., 1992. Genomic organization and expression of the human alpha 1B-adrenergic receptor. J. Biol. Chem. 267 (30), 21936– 21945
- Rokosh, D.G., Bailey, B.A., Stewart, A.F., Karns, L.R., Long, C.S., Simpson, P.C., 1994. Distribution of alpha 1C-adrenergic receptor mRNA in adult rat tissues by RNase protection assay and comparison with alpha 1B and 1D. Biochem. Biophys. Res. Commun. 200 (3), 1177–1184.
- Scofield, M.A., Liu, F., Abel, P.W., Jeffries, W.B., 1995. Quantification of steady state expression of mRNA for alpha-1 adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J. Pharmacol. Exp. Ther. 275 (2), 1035–1042.
- Suzuki, F., Miyamoto, S., Takita, M., Oshita, M., Watanabe, Y., Kakizuka, A., Narumiya, S., Taniguchi, T., Muramatsu, I., 1997. Cloning, functional expression and tissue distribution of rabbit α_{1d}-adrenoceptor. Biochim. Biophys. Acta 1323 (1), 6–11.

- Takahashi, M., Taniguchi, T., Murata, S., Okada, K., Moriyama, N., Yamazaki, S., Muramatsu, I., 1999. New alpha 1-adrenoceptor antagonist, JTH-601, shows more than 10 times higher affinity for human prostates than arteries. J. Urol. 16 (4), 1350–1354.
- Testa, R., Guarneri, L., Taddei, C., Poggesi, E., Angelico, P., Sartani, A., Leonardi, A., Gofrit, O.N., Meretyk, S., Caine, M., 1996. Functional antagonistic activity of Rec 15/2739, a novel alpha-1 antagonist selective for the lower urinary tract, on noradrenaline-induced contraction of human prostate and mesenteric artery. J. Pharmacol. Exp. Ther. 277 (3), 1237–1246.
- Tseng-Crank, J., Kost, T., Goetz, A., Hazum, S., Roberson, K.M., Haizlip, J., Godinot, N., Robertson, C.N., Saussy, D., 1995. The alpha 1C-adrenoceptor in human prostate: cloning, functional expression, and localization to specific prostatic cell types. Br. J. Pharmacol. 115 (8), 1475–1485.
- Voigt, M.M., Kispert, J., Chin, H.M., 1990. Sequence of a rat brain cDNA encoding an alpha-1B adrenergic receptor. Nucleic Acids Res. 18 (4), 1053.
- Weinberg, D.H., Trivedi, P., Tan, C.P., Mitra, S., Perkins-Barrow, A., Borkowski, D., Strader, C.D., Bayne, M., 1994. Cloning, expression and characterization of human alpha adrenergic receptors alpha 1a, alpha 1b and alpha 1c. Biochem. Biophys. Res. Commun. 201 (3), 1296–1304.
- Yang, M., Verfurth, F., Buscher, J.R., Michel, M.C., 1997. Is alpha 1D-adrenoceptor protein detectable in rat tissues? Naunyn-Schmiedeberg's Arch. Pharmacol. 355 (4), 438–446.